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Chap.4 Duct Acoustics 

❖Duct Acoustics

 Plane wave

• A sound propagation in pipes with different cross-sectional area

• If  the wavelength of sound is large in comparison with the 

diameter of the pipe the sound propagates as an one-dimensional 

wave  ( λ>>d  → 1-d wave)
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Transmission & Reflection of Plane Waves

❖Duct Acoustics
• The mass flux into the junction must equal the mass flux out

• The velocity must equal at both sides of the junction

• Energy flux)in = Energy  flux)out

• The pressure of both sides of junction is continuous
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Transmission & Reflection of Plane Waves

❖Duct Acoustics
• The amplitudes of other wave, R and T ,are can be solve from 

above the relations

• The transmission loss , LT is symmetric in A1 and A2
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Transmission & Reflection of Plane Waves

❖Duct Acoustics

A single expansion-chamber ‘silencer’

• The simple muffler that is a used in car ‘silencer’ consists of inlet 

and outlet pipes with cross-sectional area A1, and expansion 

chamber between them of cross-sectional area A2 and length l
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Transmission & Reflection of Plane Waves

❖Duct Acoustics
• The first area change occurs at x=0 and the second occurs at x=l.

• The condition of continuity of mass flux,

• The condition of continuity of pressure
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Transmission & Reflection of Plane Waves

❖Duct Acoustics
• The algebraic equation when solved for R and T

• However, the simple ‘silencer’ does not reduce the total energy of 

sound in the system.

• Reducing the acoustic energy of transmitted wave 

→ Increasing in the reflected wave

• Sound absorbing material 

→ reduce the acoustic energy by converting it into heat or vibration
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Transmission & Reflection of Plane Waves

❖Duct Acoustics
• The transmission loss , LT is 

• The transmission loss is maximum at frequencies for which

• The effect of expansion ratio 
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Transmission & Reflection of Plane Waves

❖Duct Acoustics

Note
• ‘Tuning’ for dominant frequencies of noise

• Theory work for only λ≫d “Low frequency wave only”

• High frequency waves behave like 3-D 

• Also, the geometrical shape of the duct is not important (provided 

the area change occurs in a distance short in comparison with the 

wavelength
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Transmission & Reflection of Plane Waves

❖Duct Acoustics

Effect of expansion chamber ratio Effect of expansion chamber shape

Ref. “Theoretical and experimental investigation of 

mufflers with comments on engine-exhaust muffler 

design”,   Davis et al. NACA 1192(1954)
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Transmission & Reflection of Plane Waves

❖Higher order modes

• As an illustration, the sound of frequency ω in a rigid walled duct 

of square cross-section with sides of length a is considered

• With substitution for p′ into the wave equation,
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Transmission & Reflection of Plane Waves

❖Higher order modes
• Since  a wall boundary condition is applied, function f is derived 

like this

• Similarly function g is derived like this

• Finally, function h is derived to the propagation form

• The axial phase speed, cp=ω/kmn is now a function of the mode 

number and the propagation of a group of waves will cause them to 

disperse.
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Transmission & Reflection of Plane Waves

❖Higher order modes
• The pressure perturbation in the (m,n) mode has the form

• When kmn is real, the pressure perturbation equation represents that 

waves are propagating down the x3 axis with phase speed.

• When kmn is purely imaginary, i.e. exceeds the cut-off frequency, 

the strength of mode varies exponentially with distance along the 

pipe. Such disturbances are evanescent
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Transmission & Reflection of Plane Waves

❖Pipes of varying cross-section

Wave equation

• If the pipe diameter is small in comparison with both the acoustic 

wavelength and the length scale over which the cross-sectional area 

change, most particle motions are longitudinal.  

• Conservation of mass 

• Linearized  momentum equation is

• Modified wave equation
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Transmission & Reflection of Plane Waves

❖Pipes of varying cross-section

Application to the ‘exponential horn’

• Evaluation of the case of ‘exponential horn’ which cross-sectional 

area defined as,  A(x)=A0e
αx

• For such an area variation of wave equation simplifies to

• The pressure perturbation in sound waves of frequency ω then has 

the form 

• Disturbance with ω > αc/2  propagates and the pressure but not the 

energy flux attenuates during propagation, while lower frequency 

modes are ‘cut-off’
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Transmission & Reflection of Plane Waves

❖Normal transmission

 Physics at the interface

• When a sound wave crosses an interface between two different 

fluids some of the acoustic energy is usually reflected.

• There are two boundary conditions

The pressure on the two sides of the boundary must be equal

The particle velocities normal to the interface must be equal
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Transmission & Reflection of Plane Waves

❖Normal transmission
• The pressure must be equal at the interface : I+R=T

• The particle velocities normal to the interface must be equal

• The result pressure coefficients, R and T , are determined with I

• Velocity Transmission Coefficient :

• The energy flux of the incident wave per unit cross sectional area is 

equal to that of the reflected and transmitted waves
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❖Normal transmission

Reflection from a high and low impedance fluid

• A typical example is aerial sound waves incident onto a water 

surface.  (ρ0c0 ≪ ρ1c1 )

• Velocity transmission coefficient 

so, the transmission wave carries negligible energy

Transmission & Reflection of Plane Waves
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Transmission & Reflection of Plane Waves

❖Normal transmission

Reflection from a high and low impedance fluid

• In the opposite case, for sound in water incident onto a free surface 

with air, the reflected and transmitted waves are

• The acoustic energy is totally reflected
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Transmission & Reflection of Plane Waves

❖Sound propagation through walls

 Effect of a wall in transmission

• A sound wave normally incident on a plane material layer 

partitioning a fluid which has uniform acoustic properties, ρ0c0

• Some sound will be reflected from the layer and some will be 

transmitted through the wall
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Transmission & Reflection of Plane Waves

❖Sound propagation through walls
• There are two boundary conditions that must be satisfied at all 

times and points

The velocity of the wall must be equal to wave of each side

A pressure difference across the wall in order to provide the 

force necessary to accelerate unit area of the surface of 

material

• By continuity the velocity of wall,

• The pressure difference is the net force of mass per unit area of the 

wall
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Transmission & Reflection of Plane Waves

❖Sound propagation through walls
• The result pressure coefficients, R and T , are determined with I

• Surface Impedance

• Energy transmitted
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Transmission & Reflection of Plane Waves

❖Sound propagation through walls
• The transmission loss is dependent on the frequency ω.

• For high frequency(ωm≫ρ0c0), the sound waves mostly reflected

• For low frequency(ωm≪ρ0c0), the sound waves mostly travels 

through the wall with very little attenuation

• “Low frequency waves get through a massive wall easily, while 

high frequency waves are effectively stopped”
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Transmission & Reflection of Plane Waves

❖Sound propagation through walls

 Example) Attenuation by a wall

• Transmission loss
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